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Riemannian geometric approach to human arm dynamics, movement optimization, and invariance
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We present a generally covariant formulation of human arm dynamics and optimization principles in
Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost
functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the
corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric.
In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric
space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by
(reparametrized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement
invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure
imposed on the arm’s configuration space may provide insights into the emerging properties of the movements
generated by the motor system.
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I. INTRODUCTION

The computational principles underlying the generation of
voluntary human motor actions are still largely unknown.
Reaching for an object, for example, requires multiple sen-
sorimotor transformations from visual to motor space. It has
been suggested that this process can be regarded as a mapping
problem between different sensorimotor spaces, such as the
transformation from retinal coordinates of visual space into
movement trajectories of task space and eventually joint angu-
lar coordinates of arm configuration space [1,2]. Interestingly,
Mach and Poincaré [3,4] have pointed out more than a century
ago the fundamental differences between sensory spaces and
Euclidean space with regard to continuity, dimensionality, spa-
tial extension, homogeneity, and isotropy. Which underlying
geometrical structure do sensorimotor spaces have? Perceptual
space, for example, has been investigated most extensively
and different non-Euclidean geometric structures have been
proposed to describe it, ranging from Riemannian manifolds
with varying curvature [5,6] to nonmetric spaces with affine
or projective geometry [7,8].

We mention briefly a few approaches that tried to incorpo-
rate geometrical methods into sensorimotor control. Pellioniz
and Llinás have proposed a “tensor network theory of the
cerebellum,” where a covariant sensory vector is transformed
into a contravariant motor execution vector by the cerebellum,
which acts as a metric tensor of a non-Euclidean neural
space [1]. Although this approach promotes a description of
sensorimotor control as a remapping problem, it has some the-
oretical flaws. For example, it neither provides a mathematical
definition of the neural manifold under consideration nor does
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it specify its metric structure [2]. Hestenes has formulated
a neurogeometry of sensorimotor control using geometric
algebra. Based on the assumption that motor neuron signals
encode solely kinematic states, a coordinate-free formulation
of eye-head kinematics [9] and body kinematics [10] is
provided. A differential geometric approach using Lie groups
and affine geometry to model eye and arm movements has also
been used [11,12].

In this paper, we model the space of arm configurations
as a Riemannian manifold and show that this geometric
approach leads to a unification of existing computational
models of human arm movements between pointlike targets.
It is proposed that point-to-point movements along geodesic
paths in the configuration manifold emerge from properties
of the motor system, which intends to reduce muscular
effort. Whereas Riemannian geometry has been extensively
applied in mechanics, particularly in robotics, it has found
little expression in formulations within models of human
motor control [12–16]. The main objective of the Riemannian
formulation lies in the determination of a suitable metric that
is meaningful to the problem under consideration. Once a
metric structure is identified, a Riemannian model formulation
is appealing for several reasons. First, expressions can be
written in a coordinate-independent or generally covariant
form. Second, the Riemannian formulation facilitates the
identification of intrinsic relations and encompasses the trans-
formation rules between different sets of coordinates. Third,
movement invariants can be derived from symmetries of the
underlying Riemannian space. Note that invariant movement
features are assumed to be a by-product of constraints imposed
by the brain to enable control of a multiple degrees of freedom
system. Thus, this paper elaborates on a differential geometric
formulation of models in human motor control.
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In a previous paper, we have assumed that the movement
properties can be derived by applying separate optimization
principles on the temporal and spatial levels of control [13].
The spatial characteristics of the movement were determined
by geodesic paths in the arm configuration space, whereas
the temporal properties followed from the minimization of
squared jerk along the hand path. We referred to this model as
the geodesic model. We show here, by expressing movement
dynamics and optimization principles in a generally covariant
form, that the geodesic model can be derived from a one-
parameter family of variational problems on the Riemannian
manifold. Hence, both the temporal and spatial characteristics
of the movements are dictated by the optimization of a single
cost in Riemannian space.

Many existing computational models have assumed that
human arm movements are planned and optimized by the
central nervous system (CNS) prior to movement execution.
Accordingly, it has been suggested that movement properties
can be derived from integral principles [17–19], similar to ac-
tion principles in physics. Whereas these formulations resulted
in deterministic models, a more recent modeling approach to
sensorimotor integration and human motor control is based
on stochastic optimal control theory. In this approach, the
expectation value of an integral cost is minimized subject to a
dynamic constraint given by the equation of motion, including
noise [20–22]. This method allows also the incorporation of
feedback mechanisms and sensory noise. Despite the merits of
a stochastic formulation, in this paper we focus on the mean
behavior during point-to-point movements and we, therefore,
apply a deterministic modeling approach. We remark that both
the stochastic and the deterministic approaches require the
specification of suitable performance indices, and we will
propose in this paper a class of cost functions that correspond
to least-effort movements.

Two classical, but fundamentally different, deterministic
models have been suggested, namely, the minimum-jerk model
(MJ) and the minimum-torque-change (MTC) model. The
MJ model is formulated in terms of Cartesian hand position
coordinates x and is based on a kinematic cost function that
minimizes the squared time derivative of the hand acceleration
a = ẍ or jerk integrated over the total movement duration T ,
i.e.,

δCMJ = 0, CMJ =
∫ T

0
〈ȧ(t),ȧ(t)〉I dt, (1)

where 〈. . . , . . .〉I is the inner product with respect to the
Euclidean metric I = diag(1,1).

In contrast, the MTC model takes movement dynamics into
account and postulates a cost function based on the Euclidean
inner product of joint torques n integrated over the movement
time T :

δCMTC = 0, CMTC =
∫ T

0
〈ṅ(t),ṅ(t)〉I dt. (2)

The joint torques are determined by the dynamic equation
of motion, which is commonly written in vector notation as

M(q)q̈ + C(q,q̇)q̇ + B(q)q̇ + g(q) = n(q,q̇), (3)

where M is the inertia matrix, C is the Coriolis matrix, B is
the viscous friction matrix, g denotes the gravitational torques,

and q is the vector of joint angles [23]. The components of
the Coriolis matrix are defined by Cμν = �μνλq̇

λ, where the
Christoffel symbols of the first kind follow from the inertia
matrix according to

�μνλ = 1

2

(
∂Mμν

∂qλ
+ ∂Mμλ

∂qν
− ∂Mνλ

∂qμ

)
. (4)

The summation convention has been used, implying a summa-
tion over the same lower and upper Greek indices from 1 to
n, where n is the number of degrees of freedom (DOF) of the
arm. It should be pointed out that the MTC model assumes the
minimization of the Euclidean norm of joint torques, which is
not necessarily the appropriate metric to choose when dealing
with intrinsic control variables.

Due to the fundamental differences existing between the MJ
and the MTC models, a considerable controversy has emerged
concerning the validity of these two models with respect to
movement optimization and control. In this paper, we show
that the MJ and MTC models are mathematically equivalent
when expressed in the Riemannian manifold M = (Q,g),
where the arm’s configuration space Q can be regarded as an
n-dimensional torus T n = S1 × . . . × S1, i.e., as the n-tuple
direct product of the circle S1. There are an infinite number
of possible metric structures, expressed in terms of the metric
tensor g = (gμν), that one can impose on the manifold. We
choose a metric tensor that is derived from the kinetic energy
of the arm (kinetic energy metric) and, thus, is closely related
to the movement dynamics [24].

II. METHODS

A. Covariant formulation of arm dynamics

We model the human arm as a linkage of rigid bodies with
four DOF (n = 4). Accordingly, an arm configuration can be
described by means of four joint angles q = (θ,η,ζ,φ)T that
define a set of generalized coordinates. The first three angles
determine the rotation around an ideally spherical shoulder
joint (elevation θ , azimuth η, torsion ζ ), whereas the rotation
around the elbow joint is given by the flexion angle (φ). We
ignore the DOF at the wrist joint.

Another possible set of four generalized coordinates is
defined by q ′ = (x,y,z,α)T , which consists of the hand
coordinates x augmented by the swivel angle α that describes
the rotation of the arm triangle around the shoulder-hand
axis [25] (see Fig. 1).

There exists a one-to-one map between the coordinates
qμ = (θ,η,ζ,φ) and q ′μ = (x,y,z,α). The coordinate differ-
entials are related via the transformation matrix � = (�μ

ν ):

dq ′μ = �μ
ν (q)dqν with �μ

ν = ∂q ′ μ

∂qν
. (5)

The inverse transformation is �̄ = �−1 and satisfies
�

μ
λ �̄λ

ν = δμ
ν , where δμ

ν is the Kronecker delta. Explicit
expression for the one-to-one map between the two sets of
coordinates and the transformations � of a four and two DOF
arm are provided in Appendices A and B, respectively.

There are infinite ways to choose coordinates that are
equally well suited for the description of an arm configuration.
This ambiguity is addressed by a covariant formulation. The
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FIG. 1. An arm configuration can be defined by different sets
of coordinates, for example, by four joint angular coordinates q =
(θ,η,ζ,φ)T . Another possible set of generalized coordinates consists
of the center of mass of the hand location vector x and the swivel angle
α around the shoulder-hand axis, i.e., q ′ = (x,y,z,α)T . The shoulder
joint is fixated and located at the origin of the XYZ coordinate system.

dynamic equation of motion (3) does not have a manifestly
covariant form because the second-order derivative of joint
angles does not generally transform as a tensor. The covariant
form follows from the reformulation of arm dynamics in the
Riemannian manifold, which is endowed with the kinetic en-
ergy metric [24]. The kinetic energy metric contains the inertial
properties of the arm, and its components are determined in
the local coordinates qμ by

Mμν(q) = ∂2K(q,q̇)

∂q̇μ∂q̇ν
, (6)

where K is the kinetic energy of the arm and M = (Mμν).
The metric (6) is positive definite and, thus, invertible. The
inverse metric is denoted as Mμν = (M−1)μν and satisfies
MμλMλν = δμ

ν . The Christoffel symbols of the second kind
are defined as �

μ
νλ = Mμρ�ρνλ (see Appendices A and B for

explicit expressions of Mμν for a two and four DOF arm).
Distances in the arm’s configuration space are measured by
the line element dσ 2 = Mμν(q)dqμdqν . Note that the distance
measure varies from point to point in the manifold, and is
related to the kinetic energy according to K = 1/2σ̇ 2.

We will next define covariant expressions for velocity,
acceleration, and jerk in the Riemannian manifold. If
V (t) = γ̇ (t) denotes the velocity along the trajectory
γ (t), then the acceleration in the Riemannian manifold
is given by the covariant derivative along the trajectory
A(t) = ∇V (t)V (t) ≡ DV (t)

dt
≡ D2γ (t)

dt2 , where ∇ denotes the
Levi-Civita connection on M = (T 4,Mμν), which is
the symmetric connection compatible with the metric. The
operator D

dt
denotes the covariant derivative along the trajectory

γ (t). Similarly, we can define jerk J(t) = D A(t)
dt

= D2 V (t)
dt2 and

higher-order time derivatives. Note that the components
of the velocity, acceleration, and jerk in the local
coordinates qμ are given by V μ = q̇μ, Aμ = DV μ

dt
=

V λ∇λV
μ = V λ(∂λV

μ + �
μ
νλV

ν) = q̈μ + �
μ
νλq̇

ν q̇λ, and Jμ =

˙q̈μ + 3�
μ
νλq̈

ν q̇λ + �
μ
νλ,ρ q̇

ν q̇λq̇ρ + �
μ
νλ�

λ
ρσ q̇ν q̇ρ q̇σ , respect-

ively, and V = V μeμ, A = Aμeμ, and J = Jμeμ, where
eμ = ∂

∂qμ denotes the coordinate basis.
We make one further assumption regarding the torques

generated by the joints. We assume that the joint torques can
be decomposed into configuration-dependent torques τ g that
compensate for the external gravitational torques and velocity-
dependent driving torques τ that move the arm through
space, i.e., we set n(q,q̇) = τ (q,q̇) + τ g(q) with τ g ≡ g. This
assumption, suggested by Atkeson and Hollerbach [26], is
based on the idea of the possible separation between torques
needed to stabilize the arm against the effect of gravity and
those needed for movement generation. We can then rewrite
(3) in generally covariant form as

MμνA
ν = Nμ, (7)

where we have defined Nμ ≡ τμ − BμνV
ν as the total torque

acting on the arm. The friction term is set to zero in the
following. Note that the metric tensor maps the covariant
acceleration (vector) into the torques (covector). Consider now
a coordinate transformation from joint angular coordinates to a
new set of coordinates qμ → q ′μ. By multiplying Eq. (7) with
�̄T and applying the transformation rules (in vector notation)
M ′ = �̄T M�̄, A′ = �A, and N ′ = �̄T N leaves the form
of the dynamic equation in the new coordinates unchanged:
M ′

μνA
′ν = N ′

μ, i.e., the dynamic equation (7) has a generally
covariant form.

III. RESULTS

A. Optimization principles in Riemannian space

We next formulate the MJ in Riemannian space by con-
sidering the general class of mean-squared-derivative (MSD)
costs of the hand vector x, for which the MJ model is
a particular member [27]. The MSD models in Euclidean
space are described by the one-parameter family of variational
problems

δCn = 0, Cn =
∫ T

0

〈
dnx(t)

dtn
,
dnx(t)

dtn

〉
I

dt, (8)

where n = 1,2, . . . . Note that, for n = 3, the MJ model (1) is
recovered.

The generalization of (8) to the Riemannian manifold is
straightforward:

δSn = 0, Sn =
∫ T

0

〈
Dn−1V (t)

dtn−1
,
Dn−1V (t)

dtn−1

〉
dt (9)

with the definition D0

dt0 := 1. The inner product 〈. . . , . . .〉
is taken with respect to the kinetic energy metric M , i.e.,
〈X,Y 〉 = 〈eμ,eν〉XμY ν = MμνX

μY ν for two arbitrary vectors
X and Y .

The MSD functionals in Riemannian space can be rewritten
by repeatedly applying the covariant derivative operator D

dt

to the dynamic equation of motion (7). Since the covariant
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derivative of the metric tensor vanishes, i.e., ∇λMμν = 0, we
obtain

Sn =
⎧⎨
⎩

2
∫ T

0 Kdt, n = 1
∫ T

0

〈
Dn−2τ (t)

dtn−2 ,Dn−2τ (t)
dtn−2

〉
dt, n = 2,3 . . .

(10)

where the case n = 1 follows from the definition of the kinetic
energy K = 1

2 〈V (t),V (t)〉. In particular, we obtain from (9)
and (10) for n = 1,2,3 the identities

S1 =
∫ T

0
〈V (t),V (t)〉dt = 2

∫ T

0
K(t)dt, (11)

S2 =
∫ T

0
〈A(t),A(t)〉dt =

∫ T

0
〈τ (t),τ (t)〉dt, (12)

S3 =
∫ T

0
〈J(t),J(t)〉dt =

∫ T

0

〈
Dτ (t)

dt
,
Dτ (t)

dt

〉
dt. (13)

We remind the reader that the Euclidean expressions of the cost
functionals in (11)–(13) have been independently studied in the
context of human motor control [17,27,28]. We conclude that
the kinematic MSD costs in the Riemannian manifold for n =
1,2,3 are identical to the dynamic cost functions defined by
the kinetic energy, squared torque, and squared torque change,
respectively. In particular, for n = 3, we find the equivalence
of the MJ and the MTC model in Riemannian space. The
Euler-Lagrange equations for the variational problems (11)–
(13) follow from the application of the calculus of variation
on manifolds [12,29]. We get

n = 1: A = 0, (14)

n = 2:
D J
dt

− R(V ,A)V = 0, (15)

n = 3:
D3 J
dt3

− R

(
V ,

D J
dt

)
V + R(A,J)V = 0. (16)

For arbitrary n > 0, we obtain [30–32]

D2n−1V
dt2n−1

−
n−2∑
i=0

(−1)iR

(
Di V
dti

,
D2n−3−i V
dt2n−3−i

)
V = 0, (17)

where R is the Riemann curvature tensor defined by
R(X,Y )Z = [∇X,∇Y ]Z − ∇[X,Y ] Z for arbitrary vector fields
X,Y ,Z and [. . . , . . .] denotes the commutator [33]. The
solution γ (t) of the Euler-Lagrange equation (17) for any value
of n > 0 subject to the boundary conditions

γ (0) = a, γ (T ) = b
Dγ (0)

dt
= 0,

Dγ (T )
dt

= 0
...

...
D2n−1γ (0)

dt2n−1 = 0,
D2n−1γ (T )

dt2n−1 = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(18)

is given by reparametrized geodesic paths between two points
a and b in the Riemannian manifold, as we will show next.
The solution of the Euler-Lagrange equation is derived in
a coordinate-free form by making use of the following two
properties of an affine connection ∇:

∇f XY = f ∇XY , (19)

∇Xf Y = f ∇XY + (LXf )Y , (20)

where X,Y are arbitrary vector fields and f denotes a function.
L is the Lie-derivative operator. For the solution, we make the
ansatz γ (t) = γ (σ (t)) and obtain with the chain rule

DV
dt

≡ ∇γ̇ (t)γ̇ (t) = ∇[σ̇ γ ′(σ )][σ̇ γ ′(σ )]

(19)= σ̇∇γ ′(σ )[σ̇ γ ′(σ )]
(20)= σ̇ 2∇γ ′(σ )γ

′(σ ) + σ̇ (Lγ ′(σ )σ̇ )γ ′(σ )

= σ̇ 2∇γ ′(σ )γ
′(σ ) + σ̈ γ ′(σ ), (21)

where we have used Lγ ′(σ )f = d
dσ

f and a prime denotes
differentiation with respect to arc length σ . Along a geodesic
path, the geodesic equation is obeyed:

Dγ ′(σ )

dσ
≡ ∇γ ′(σ )γ

′(σ ) = 0, (22)

and, thus, Eq. (21) becomes DV
dt

= σ̈ γ ′(σ ). Similarly, we
get for the k-fold covariant derivative along a geodesic
path

DkV
dtk

= dk+1σ (t)

dtk+1
γ ′(σ ), k = 0,1,2, . . . . (23)

Inserting (23) into the Euler-Lagrange equation (17) yields,
with R(γ ′(σ ),γ ′(σ ))γ ′(σ ) = 0,

d2nσ (t)

dt2n
= 0, n = 1,2 . . . . (24)

Equations (22) and (24) are augmented by the boundary
conditions (18), which separate into

γ μ(0) = a, γ μ(�) = b, (25)

and

σ (0) = 0, σ (T ) = �,

σ̇ (0) = 0, σ̇ (T ) = 0,

...
...

d2n−1σ (0)
dt2n−1 = 0, d2n−1σ (T )

dt2n−1 = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (26)

respectively, where � is the total length of the geodesic path
and a and b are the initial and final point in the manifold.
Equation (24) subject to (26) can be solved analytically
in terms of the generalized hypergeometric function 2F1

[27]:

σ (ϑ) = �
(2n − 1)! ϑn

(n − 1)!2 n
2F1(n; 1 − n; n + 1; ϑ), (27)

where ϑ = t/T denotes normalized time. In particular, we
obtain,

σ (ϑ) =

⎧⎪⎨
⎪⎩

�ϑ, n = 1

�(−2ϑ3 + 3ϑ2), n = 2

�(6ϑ5 − 15ϑ4 + 10ϑ3), n = 3.

(28)

We conclude that the solution of the one-parameter family
of variational problems (9) is given by the trajectory γ (t) =
γ (σ (t)). Note that the optimal solution predicts the same
geodesic path γ (σ ) for different values of n, but results
according to (27) in different profiles for the kinetic energy
K ∼ σ̇ 2. Note further that the form of the solution implies
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a decoupling of spatial movement properties (path, posture)
from temporal ones (speed, kinetic energy), as has been
assumed in the original formulation of the geodesic model
and in other works [14]. Indeed, (22) and (24) can be
regarded as the Euler-Lagrange equation of two variational
problems

δJ1 = 0 with J1 =
∫

dσ (29)

and

δJ2 = 0 with J2 =
∫ T

0

(
dnσ (t)

dtn

)2

dt, (30)

where J1 and J2 define the costs on the spatial and temporal
levels of control, respectively. The assumptions of the original
geodesic model (n = 3) are therefore captured by the single
cost given by the squared-jerk functional in Riemann space
(13). Note that the optimal solution of the one-parmater
family of MSD cost functionals in Euclidean space (8) follows
from the Riemannian result when assuming a Euclidean
metric.

What is the physical meaning of geodesic paths in the
configuration manifold, and why might they be an emergent
property of the motor system? First, geodesic paths are the
straightest and shortest paths in the configuration manifold,
and second, they correspond to least-effort paths, where effort
is defined as the amount of torques that are acting on the arm.
To derive the latter result, it is useful to work in the coordinate
basis eμ = ∂

∂qμ and to analyze the dynamic equation (7)
along an arbitrary predefined path qμ(t) = qμ(σ (t)). We obtain
from (7)

Mμν

dqν

dσ
σ̈ + Mμν

[
D

dσ

(
dqν

dσ

)]
σ̇ 2 = τμ. (31)

The two terms on the left-hand side of (31) describe the
tangential acceleration torques and the Coriolis and centripetal
torques, respectively. Note that the origin of the latter lies
in the intrinsic curvature of the path in configuration space.
Along a geodesic path, the intrinsic curvature vanishes and
the geodesic equation (22) is obeyed, which reads as, in the
coordinates qμ,

D

dσ

(
dqμ

dσ

)
= d2qμ

dσ 2
+ �

μ
νλ

dqν

dσ

dqλ

dσ
= 0. (32)

The dynamic equation of motion (31) then simplifies to

Mμν

dqν

dσ
σ̈ = τμ or σ̈ =

〈
τ ,

dq
dσ

〉
, (33)

where we have used 〈 dq
dσ

dq
dσ

〉 = 1 in the second equation.
Movements along geodesic paths can thus be considered least-
effort paths and MSD derivative functionals in Riemannian
space correspond to least-effort costs.

B. Comparison of the MJ model in Euclidean task space and
Riemannian configuration space for movements between

pointlike targets

In this section, we compare the predictions of the MJ
model in Euclidean and Riemannian configuration space that is
equipped with the kinetic energy metric between two pointlike

targets in three-dimensional space. The two models lead to
different predictions due to the differences in the underlying
metric space. For simplicity, we assume that the initial and
final arm configurations are predefined. The solution of the
MJ variational problem (1) subject to the two-point boundary
conditions

x(0) = x0, x(T ) = xf

ẋ(0) = 0, ẋ(T ) = 0

ẍ(0) = 0, ẍ(T ) = 0

⎫⎪⎬
⎪⎭ (34)

is a special case of the Riemannian result. It is given by
reparametrized straight paths (geodesic paths of Euclidean
space) x(t) = x[s(t)] with

x(s) = x0 + s

S
(xf − x0), (35)

s(t) = S(10ϑ3 − 15ϑ4 + 6ϑ5), (36)

where x0 and xf are the initial and final hand positions,
respectively, ϑ = t/T defines normalized time, and s is the
Euclidean arc length of the hand path. T is the total movement
time and S = |xf − x0|. The MJ model results in a bell-shaped
speed profile given by v = |ṡ| = 15S/(8T )[4ϑ(1 − ϑ)]2. For
point-to-point movements in three-dimensional space, how-
ever, the MJ model does not determine all DOF. Based on
our analysis of possible coordinate sets, one may extend the
hand coordinates x by the swivel angle α and formulate the MJ
model for this extended set of coordinates x̂ = (x,α). Equation
(35) is then complemented by

α(s) = α0 + s

S
(αf − α0), (37)

which together define the arm configuration completely.
In contrast, the predictions of the MJ model in Riemannian

space (13) are derived as follows: for given initial and final
arm configurations q

μ
a and q

μ

b , respectively, we first solve
the geodesic equation (32), resulting in the geodesic path
qμ(σ ) that defines the spatial properties of the movement (see
Appendices A and B for details). The temporal properties
are given by (28) for n = 3 and the movement trajectory
then follows as qμ(t) = qμ(σ (t)). Examples of geodesic
hand paths in the horizontal XY plane for a two DOF arm
between a central and circularly arranged targets are shown
in Fig. 2(a).

Note that the driving torques (τ ∼ σ̈ ) are, according to (33),
double peaked with amplitudes that depend on the inertial
properties of the arm. The kinetic energy profile is bell shaped
(K ∼ σ̇ 2) and hand speed v is determined by the kinetic energy
according to v = |ẋ| = | dx

dσ
|σ̇ ∼ K1/2, where x(σ ) is the hand

path [Fig. 2(b)].
For a detailed comparison of the MJ model in Riemannian

space with experimental data of pointing movements in three-
dimensional space, we refer the reader to [13].

C. Invariance principles and Killing vector fields

In the last section, we determine the movement invariants
and the constants of motion associated with the geodesic
model. Generally, symmetries and conservation laws define
important properties of a computational model and are of
particular interest for model evaluation. We first observe
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FIG. 2. (Color) (a) Geodesics paths with respect to the kinetic
energy metric in the horizontal plane XY from a central initial target
to circularly arranged final targets (radius: 0.27 m) in the XY plane.
The shoulder joint of the arm is located at (0,0). (b) Normalized hand
speed profiles along the geodesic paths of (a) as they result from
the geodesic model [color code as in (a)]. ϑ = t/T is normalized
time. The speed v = | dx

dσ
|σ̇ is normalized with respect to the average

hand speed S/T , where S is the Euclidean distance between initial
and final hand position and T is the total movement time. The black
line shows the normalized speed profile of the original minimum-
jerk model. Simulation parameters are mean values for the right arm
of a male subject with total body mass m = 85 kg: l1 = 0.30 m,
l2 = 0.345 m, m1 = 2.52 kg, m2 = 2.07 kg, a1 = 0.142 m, a2 =
0.225 m, I1,x = 0.019 kg m2, I2,x = 0.021 kg m2. The parameters are
defined in Appendix A.

that the functional (9) scales under a change of amplitude
V ′ = ωV and time t ′ = βt according to S ′

n = ω2β1−2nSn,
and, thus, the optimal solution is invariant under these
transformations.

The first set of constants of motion, associated with the
variational problem (9), is directly derived from the Euler-
Lagrange equations (17) and is therefore independent of the
specific choice of Riemannian manifold. It has been shown

[31,32] that, if the trajectory satisfies the Euler-Lagrange
equation (17), the following quantity is preserved:

In = (−1)n−1

2

〈
Dn−1V
dtn−1

,
Dn−1V
dtn−1

〉

+
n−1∑
j=1

(−1)(j−1)

〈
D2n−j−1V
dt2n−j−1

,
Dj−1V
dtj−1

〉
. (38)

This result follows by differentiating (38) and using the
Euler-Lagrange equation (17) together with the property of
the Riemannian tensor 〈R(X,Y )Z,Z〉 = 0, which holds for
all vector fields X,Y ,Z (in component notation this property
corresponds to Rλλμν = 0). It is important to note that these
constants of motion hold in any Riemannian manifold. For
movements along geodesic paths, expression (38) simplifies
to

In = (−1)n−1

2

(
dnσ

dtn

)2

+
n−1∑
j=1

(−1)(j−1) d
2n−j σ

dt2n−j

djσ

dtj
(39)

and leads, for n = 1,2,3, to the following expressions:

I1 = 1
2 σ̇ 2, (40)

I2 = ˙σ̈ σ̇ − 1
2 σ̈ 2, (41)

I3 = σ (5)σ̇ − σ (4)σ̈ + 1
2˙σ̈ 2. (42)

The second set of constants of motion depends on the
specific properties of the Riemannian manifold and is derived
from Killing vector fields that describe the symmetries of the
Riemannian manifold. Killing vector fields define directions
in the manifold along which the metric tensor does not change
and are solutions of Killing’s equation [33], given by Lξg = 0,
where Lξ is the Lie-derivative operator in the direction of
the Killing vector field ξ . In the local coordinates qμ, where
ξ = ξμ ∂

∂qμ , Killing’s equation can be written in the form

∇νξμ + ∇μξν = 0, (43)

where ∇νXμ = ∂Xμ

∂qν − �λ
μνXλ. In the special case where the

metric tensor does not depend on one of the coordinates, say
qα , the Killing vector is given by ξ ≡ ∂

∂qα with components
ξμ = δμ

α . An important application of Killing vector fields lies
in the following theorem: if ξ is a Killing vector and t is the
tangent vector to a geodesic path, then 〈ξ ,t〉 is a constant
of motion along this path. Thus, each Killing vector field
induces a constant of motion along geodesic paths. Movement
invariants can thus be generated by Killing vector fields. It is
well known that three-dimensional Euclidean space adopts six
Killing vector fields, which generate the rigid transformations
(three rotations and three translations) that leave the Euclidean
metric invariant. Euclidean space is maximally symmetric
because it adopts the maximal possible number of Killing
vectors given by m(m + 1)/2, where m is the dimension
of the manifold. In contrast, the kinetic energy metric only
adopts one Killing vector field, namely, ξ = ∂

∂η
or expressed in

coordinates ξμ = (0,1,0,0), because the kinetic energy metric
is invariant under azimuthal rotations. The constant of motion
induced by this Killing vector is given in local coordinates
by 〈ξ ,t〉 = dqμ

dσ
Mμ2. Figure 3 shows the integral curves of the

Killing vector field for movements in the XY plane of a two
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FIG. 3. (Color) Metric tensor field and Killing vector field for
movements of a two DOF arm in the XY plane. The metric tensor field
is shown in (x,y) coordinates and visualized by ellipses. The Killing
vector field is in the directions of the coordinate lines θ2 = const (blue
solid lines). Note that the metric tensor (the size of the ellipses) along
the Killing vector field does not change. The shoulder joint of the arm
is located at (0,0). Simulation parameters as given in the caption of
Fig. 2.

DOF arm, which correspond to the coordinate lines θ2 = const.
The metric tensor field for different hand locations along the
Killing vector fields is visualized by ellipses. It represents
physically the effective inertial mass distribution around the
hand location. Note that the metric tensor does not change
along the Killing vector field.

IV. DISCUSSION

In this paper, we have provided an intrinsic formulation of
human arm dynamics that is independent of the coordinate
representation. We have generalized the class of kinematic
MSD cost functionals from Euclidean to Riemannian space. It
is important to note that MSD costs have often been suggested
as important cost functions in the study of human motor control
[17,27]. When applying these generalized costs to point-to-
point reaching movements, we have derived their optimal
solutions in terms of reparametrized geodesic paths. This result
holds for any Riemannian manifold. We can then make specific
choices for Riemannian manifolds and label points of the
manifold in terms of specific sets of coordinates. For example,
if we choose for the manifold two-dimensional Euclidean
space M = E2 ≡ (R2,I ) with Cartesian coordinates, where
I = diag(1,1), then Eq. (9) results in the MJ model in its
original form (1). That is, the reparametrized geodesic paths
in Euclidean space correspond to the well-known MJ solution
in terms of straight hand paths and bell-shaped hand speed
profiles.

In this paper, we have focused on the Riemannian manifold
given by the arm’s configuration space equipped with the

kinetic energy metric M = (T 4,Mμν). In this metric space,
we have shown the mathematical identity of the kinematic
MSD costs and their dynamical equivalents, in particular, we
have deduced the equivalence of the MJ and MTC models.
This result provides a new perspective with respect to a long-
standing controversy of kinematic versus dynamic modeling
approaches in human motor control.

Geodesic paths in the Riemannian configuration manifold
have been identified as least-effort paths as well as the
optimal solution of the one-parameter family of MSD costs in
Riemannian space. Hence, these costs do not only maximize
smoothness, but simultaneously minimize movement effort
and, thus, encode two performance indices that have been
suggested to play a significant role in movement optimization
[34,35].

We have derived one class of movement invariants from
symmetries of the underlying manifold. Whereas the MSD
costs in Euclidean space are invariant to rigid transfor-
mations, the invariants of the MSD costs in Riemannian
space are dictated by the local properties of a nonisotropic
arm inertia. These invariants were classified in terms of
Killing vector fields that define the symmetries of the metric
tensor and determine constant of motions along geodesic
movements.

Nevertheless, several important aspects have not been
considered in this paper such as the presence of holonomic
and nonholonomic constraints, the adaption to external force
fields, and the effect of visual feedback.

A Riemannian geometric approach to the control of arm
dynamics under constraints has been implemented in [36],
where it is shown that holonomic constraints lead to a
Riemannian submanifold with a naturally induced metric,
whereas nonholonomic constraints result in a restricted set
of tangent vectors on the original manifold. Constraints
in the form of additional intermediate targets have been
successfully modeled in planar obstacle-avoidance movements
using the minimum-jerk model [17]. Minimization of MSD
costs in a general Riemannian manifold subject to addi-
tional intermediate point constraints have been considered
in [31,32].

The reaction to perturbative external force fields has been
studied in [37]. In a Riemannian framework, perturbations
may be analyzed in terms of geodesic deviation. Interestingly,
the evolution of geodesic deviation and, thus, the stability (or
instability) of the geodesic path, is determined by the curvature
of the manifold [38]. On the other hand, the control of arm
stiffness that stabilizes the arm against perturbing external
forces can be interpreted geometrically as shaping the manifold
around the movement trajectory [10,39]. It is an open question
as to whether this qualitative description can be turned into a
coherent mathematical model.

The availability of visual feedback from the moving hand
leads to a straightening of hand paths in Euclidean space [40].
Visual feedback might be incorporated in a Riemannian frame-
work using information geometric methods [41]. However,
further studies need to demonstrate the feasibility of this
approach.

In summary, we argue that the description of sensorimotor
spaces and the understanding of human motor actions may
benefit from a differential geometric approach that aims to
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identify suitable manifolds, their symmetry transformations,
and possible affine or metrical structures.
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APPENDIX A: FOUR DOF ARM

1. Forward and inverse kinematics

The human arm is modeled as a chain of rigid links.
For the description of an arm configuration in terms of four
joint angles, a parametrization as in [13] is chosen. In this
representation, the elbow joint location p = (u,v,w)T and
the center of mass of the hand location x = (x,y,z)T are
determined by the joint angles q = (θ,η,ζ,φ)T according to

u = −l1 sin θ sin η, v = l1 sin θ cos η, w = −l1 cos θ,

x = u − l2[(cos θ sin η cos ζ + cos η sin ζ ) sin φ

+ sin θ sin η cos φ],

y = v + l2[(cos θ cos η cos ζ − sin η sin ζ ) sin φ

+ sin θ cos η cos φ],

z = w + l2[sin θ cos ζ sin φ − cos θ cos φ],

where l1 and l2 are the upper and forearm lengths, respectively.
We assume in all our derivations that | p × x| 	= 0 and
|w| < l1.

Another set of four generalized coordinates is defined by
q ′ = (x,y,z,α)T , which consists of the hand coordinates x and
the angle α that describes the rotation of the plane spanned by
the upper and forearm around the shoulder-hand axis. The
rotation angle α is determined by the joint angles according
to

tan α = l1 sin θ cos ζ + l2(sin θ cos ζ cos φ + cos θ sin φ)

d sin θ sin ζ
,

where d = |x| is the shoulder-hand distance. Further, we
provide the relation

cos α = d sin θ sin ζ

e
,

with e =
√

x2 + y2, which will be used later for the determi-
nation of the Jacobi transformation matrix.

To derive the functional dependence of the joint angles
q on the coordinates q ′ (inverse kinematics), we first deter-
mine the joint angles in terms of elbow and hand location.
We find

θ = a cos

(−w

l1

)
, η = a tan2 (−u,v),

ζ = a tan2 [l1(uy − vx),v(vz − wy) − u(wx − uz)],

φ = a cos

(
x2 + y2 + z2 − l2

1 − l2
2

2l1l2

)
,

where the two argument a tan2 function is a tan2(a,b) :=
a tan( a

b
) − sign(a)[1 − sign(b)]π

2 . The inverse kinematic rela-
tions follow when combining the previous expressions with
the relation that gives the elbow location as a function of hand
position and the rotation angle α. All elbow positions lie on
the intersection circle of two spheres that have centers at the
shoulder and hand position with radii l1 and l2, respectively.
We get

p(x,α) = Rz(ϕ)Ry(ϑ)[f ex + rer (α)],

where the radial distance to the center of the intersection
circle is f = 1

2d
(l2

1 − l2
2 + d2) and the intersection circle

radius is r = 1
2d

√
4d2l2

1 − (l2
1 − l2

2 + d2)2. Furthermore, it is
ϕ = a tan2 (y,x), ϑ = a sin (z/d), ex = (1,0,0)T , and er (α) =
(0, − cos α, − sin α)T . Ry and Rz define rotation matri-
ces around the y and z axes, respectively, and are given
by

Ry(ϑ) =

⎛
⎜⎝

cos ϑ 0 − sin ϑ

0 1 0

sin ϑ 0 cos ϑ

⎞
⎟⎠

and

Rz(ϕ) =

⎛
⎜⎝

cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1

⎞
⎟⎠ .

2. Jacobi transformation matrix �

The transformation matrix from the coordinates qμ =
(θ,η,ζ,φ) to the coordinates q ′μ = (x,y,z,α) is given by
�μ

ν = ∂q ′μ
∂qν . The nonzero components are

�1
1 = −l1 cos θ sin η − l2(cos θ sin η cos φ

− sin θ sin η cos ζ sin φ),

�1
2 = −l1 sin θ cos η − l2[cos η(cos θ cos ζ sin φ

+ sin θ cos φ) − sin η sin ζ sin φ],

�1
3 = l2 sin φ(cos θ sin η sin ζ − cos η cos ζ ),

�1
4 = l2[sin θ sin η sin φ − cos φ(cos θ cos ζ sin η

+ cos η sin ζ )],

�2
1 = l1 cos θ cos η + l2 cos η(cos θ cos φ

− sin θ cos ζ sin φ),

�2
2 = −l1 sin θ sin η − l2[sin η(cos θ cos ζ sin φ + sin θ cos φ)

+ cos η sin ζ sin φ],

�2
3 = −l2 sin φ(sin η cos ζ + cos θ cos η sin ζ ),

�2
4 = l2[cos η(cos θ cos ζ cos φ − sin θ sin φ)

− sin η sin ζ cos φ],

�3
1 = l1 sin θ + l2(cos θ cos ζ sin φ + sin θ cos φ),

�3
3 = −l2 sin θ sin ζ sin φ,

�3
4 = l2(cos θ sin φ + sin θ cos ζ cos φ),
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�4
1 = − d

e2
l2 sin ζ sin φ,

�4
3 = − d

e2
[l1 sin2 θ + l2 sin θ (sin θ cos φ + cos θ cos ζ sin φ)],

�4
4 = l2 sin θ sin ζ

2de2

[
2l2

2(cos θ cos φ − sin θ cos ζ sin φ)

+ l1l2(3 cos θ + cos θ cos 2φ − sin θ cos ζ sin 2φ)

+ 2l2
1 cos θ cos φ

]
,

where we have used the identity

�4
ν = ∂α

∂qν
= ∂ arctan(tan α)

∂qν
= 1

1 + tan2 α

∂ tan α

∂qν

= cos2 α
∂ tan α

∂qν
.

3. Kinetic energy metric

The kinetic energy in the local coordinates qμ = (θ,η,ζ,φ)
is given by

K = 1
2Mμν(q)q̇μq̇ν,

where the nonzero components of the kinetic energy metric
Mμν are

M11 = I1 + 2I5 cos φ + I3 cos2 ζ + I3 sin2 ζ cos2 φ

+ I4 sin2 ζ sin2 φ,

M12 = −{[I5 + (I3 − I4) cos φ] cos θ

+ (−I3 + I4) sin θ cos ζ sin φ} sin ζ sin φ,

M13 = −[I5 + (I3 − I4) cos φ] sin ζ sin φ,

M14 = (I3 + I5 cos φ) cos ζ,

M22 = I1 sin2 θ + (I2 + I3 sin2 φ) cos2 θ

+ I4 sin2 θ cos2 ζ sin2 φ

+ (I4 cos2 θ + I3 sin2 θ cos2 ζ ) cos2 φ

+ I5 sin 2θ cos ζ sin φ

+ [2I5 sin2 θ + (I3 − I4) sin 2θ cos ζ sin φ] cos φ

+ I3 sin2 θ sin2 ζ,

M23 = (I2 + I4 cos2 φ + I3 sin2 φ) cos θ

+ [I5 + (I3 − I4) cos φ] sin θ cos ζ sin φ,

M24 = (I3 + I5 cos φ) sin θ sin ζ,

M33 = I2 + I4 cos2 φ + I3 sin2 φ,

M44 = I3,

with Mμν = Mνμ and constants

I1 = I1,x + m1a
2
1 + m2l

2
1 , I2 = I1,z,

I3 = I2,x + m2a
2
2, I4 = I2,z, I5 = m2l1a2.

The parameters mi,li ,ai (i = 1,2), denote mass, length, and
distance to the center of mass of the upper and forearm,
respectively. The principal moments of inertia around the
transversal (x,y) and longitudinal (z) axes of the limbs at
the center of mass are denoted by Ii,x, Ii,y, Ii,z (i = 1,2). It
is assumed that the transversal components of the moment of
inertia for the upper arm and forearm, respectively, are the
same, i.e., I1,x = I1,y and I2,x = I2,y .

The Christoffel symbols of the second kind follow from the
metric according to

�λ
μν = Mλρ

(
∂Mμρ

∂xν
+ ∂Mνρ

∂xμ
− ∂Mμν

∂xρ

)
,

and can be computed explicitly by using symbolic mathematics
software packages such as MATHEMATICA or MAPLE.

4. Geodesic paths

The determination of the geodesic path in the configuration
manifold follows from the solution of the geodesic equation.
The geodesic equation for a four DOF arm can be written as
a system of eight first-order ordinary differential equations
(ODEs) by setting y1 = θ, y2 = η, y3 = ζ, y4 = φ, y5 =
θ̇ , y6 = η̇, y7 = ζ̇ , and y8 = φ̇, leading to (a dot denotes here
differentiation with respect to the path parameter λ)

ẏ1 = y5, ẏ2 = y6, ẏ3 = y7, ẏ4 = y8, ẏ5 = −�1
ij u

iuj ,

ẏ6 = −�2
ij u

iuj , ẏ7 = −�3
ij u

iuj , ẏ8 = −�4
ij u

iuj ,

where we have defined ui = yi+4 (i = 1,2,3,4). The sys-
tem of ODEs subject to the boundary conditions y1(0) =
θ (0), y2(0) = η(0), y3(0) = ζ (0), y4(0) = φ(0), y1(1) = θ (1),
y2(1) = η(1), y3(1) = ζ (1), and y4(1) = φ(1) defines a
two-point boundary value problem, which can be solved
numerically by using shooting methods (e.g., MATLAB, bvp4c),
[42]. One remark about the parametrization of the geodesic
path is needed. The geodesic path as it results from the
solution of the system of ODEs is parametrized with respect
to an arbitrary parameter λ ∈ [0,1]. However, the parameter
λ defines automatically an affine parameter because it is
proportional to the Riemannian arc length σ . The parameters
are related by λ = σ/�, where the total length of the geodesic
path � follows from

� =
∫ 1

0

√
Mμν

dqμ

dλ

dqν

dλ
dλ

and qμ(λ) defines the geodesic path.
The reparameterization of the geodesic path in terms of the

parameter σ can thus be easily performed.

APPENDIX B: TWO DOF ARM

1. Forward and inverse kinematics

For the special case where the arm moves in the XY plane
of the shoulder-centered frame (Fig. 1), the joint angle coor-
dinates have the form qμ = (π/2,θ1 − π/2,π/2,θ2), where θ1

is the angle enclosed by the upper arm and the X axis and θ2

is the flexion angle. It is convenient for the following to define
the two-dimensional joint angle coordinates hμ = (θ1,θ2) and
the hand position coordinates h′μ = (x,y). The coordinates are
related according to

x = l1 cos θ1 + l2 cos(θ1 + θ2),

y = l1 sin θ1 + l2 sin(θ1 + θ2),

031927-9



ARMIN BIESS, TAMAR FLASH, AND DARIO G. LIEBERMANN PHYSICAL REVIEW E 83, 031927 (2011)

and

θ1 = a tan2(y,x) − a cos

(
d2 + l2

1 − l2
2

2l1d

)
,

θ2 = π − a cos

(
l2
1 + l2

2 − d2

2l1l2

)

with d =
√

x2 + y2.

2. Jacobi transformation matrix �

The Jacobi transformation matrix � is given by �μ
ν = ∂h′μ

∂hν

with components

�1
1 = −l1 sin θ1 − l2 sin(θ1 + θ2),

�1
2 = −l2 sin(θ1 + θ2),

�2
1 = l1 cos θ1 + l2 cos(θ1 + θ2),

�2
2 = l2 cos(θ1 + θ2).

3. Kinetic energy metric

The kinetic energy in the coordinates hμ = (θ1,θ2) is

K = 1
2Mμν(h)ḣμḣν,

where

M11 = I1 + I3 + 2I5 cos θ2,

M12 = I3 + I5 cos θ2,

M22 = I3.

Note that the components of the metric tensor do not depend
on θ1.

The Christoffel symbols of the second kind then follow as

�1
11 = −I5(I3 + I5 cos θ2) sin θ2

I1I3 − I 2
5 cos2 θ2

,

�1
12 = − I3I5 sin θ2

I1I3 − I 2
5 cos2 θ2

,

�1
22 = − I3I5 sin θ2

I1I3 − I 2
5 cos2 θ2

,

�2
11 = I5(I1 + I3 + 2I5 cos θ2) sin θ2

I1I3 − I 2
5 cos2 θ2

,

�2
12 = I5(I3 + I5 cos θ2) sin θ2

I1I3 − I 2
5 cos2 θ2

,

�2
22 = I5(I3 + I5 cos θ2) sin θ2

I1I3 − I 2
5 cos2 θ2

,

with �λ
μν = �λ

νμ. We remark that any two-dimensional Rie-
mannian manifold is conformally flat, i.e., there exist new
coordinates h̃μ = (u,v) for which the line element takes the
form dσ 2 = �2(u,v)(du2 + dv2), where �2 is the conformal
factor. The metric tensor thus has Euclidean form up to a
global, position-dependent stretch factor. The new coordinates
are related to the old ones as

u = 1√
2

(
θ1 +

∫ θ2 M12(w) − √|M(w)|
M11(w)

dw

)
,

v = 1√
2

(
θ1 +

∫ θ2 M12(w) + √|M(w)|
M11(w)

dw

)
,

where |M| = det(Mμν) and �2 = M11.
The integrations in the expressions for u and v can

be performed, but lead to elliptical integrals. Although the
metric tensor has diagonal form in the new coordinates,
the computation of the geodesic paths is thereby not much
simplified because, for this purpose, the conformal factor �2

must be expressed in the new coordinates (u,v).

4. Geodesic paths

The geodesic equation for a two DOF arm can be written
as a system of four first-order ODEs by setting y1 = θ1, y2 =
θ2, y3 = θ̇1, and y4 = θ̇2, leading to

ẏ1 = y3, ẏ2 = y4,

ẏ3 = −(
�1

11y
2
3 + 2�1

12y3y4 + �1
22y

2
4

)
,

ẏ4 = −(
�2

11y
2
3 + 2�2

12y3y4 + �2
22y

2
4

)
with boundary conditions y1(0) = θ1(0), y2(0) = θ2(0),
y1(1) = θ1(1), and y2(1) = θ2(1).
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