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Diffusion in a dendritic spine: The role of geometry
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Dendritic spines, the sites where excitatory synapses are made in most neurons, can dynamically regulate
diffusing molecules by changing their shape. We present here a combination of theory, simulations, and
experiments to quantify the diffusion time course in dendritic spines. We derive analytical formulas and
compared them to Brownian simulations for the mean sojourn time a diffusing molecule stays inside a den-
dritic spine when either the molecule can reenter the spine head or not, once it is located in the spine neck. We
show that the spine length is the fundamental regulatory geometrical parameter for the diffusion decay rate in
the neck only. By changing the spine length, dendritic spines can be dynamically coupled or uncoupled to their
parent dendrites, which regulates diffusion, and this property makes them unique structures, different from

static dendrites.
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I. INTRODUCTION

Dendritic spines, the sites where excitatory synapses are
made in most neurons of the brain, are considered to be
physical microdomains, where crucial chemical reactions, re-
lated to synaptic transmission and plasticity, are taking place.
Due to their specific geometric shapes, which can be ap-
proximated by a head connected through a cylindrical neck
to the dendrite, dendritic spines have been considered as a
nearly independent calcium compartment [1,2]. Indeed, the
spine head contains many key calcium activated molecules
involved in the regulation of both the number and the con-
ductance states of ionotropic receptors. Thus spine geometry
regulation may provide important clues to synaptic transmis-
sion and plasticity. In spite of its intuitive significance, the
role of geometry in spine functions is not entirely clear. Re-
cent studies have reported changes in spine geometry in as-
sociation with functional plasticity [3]. These studies call for
a quantitative analysis of the role of spine geometry in the
trafficking of ions and proteins or transcription factors. For
example, to elucidate the way spine geometry restricts diffu-
sion or regulates the time and the amount of diffusing cal-
cium ions, several groups have attempted to obtain quantita-
tive information about spine dynamics from both experi-
mental methods and theoretical analysis [4-7].

We propose here to analyze the role of spine geometry on
diffusing molecules by using a combination of mathematical
analysis, experimental data, and numerical simulations. We
recently obtained [8-10] an estimation of the mean time a
diffusing ion or molecule stays inside a spine and this time
can be asymptotically computed from a three-dimensional
analysis of the geometry in the limit of a small ratio of the
spine neck-to-spine head radii. For a small aspect ratio of
neck radius to the spine length (say less than 1/3), the mean
sojourn time a diffusing molecule stays inside the total spine
or inside the spine neck is exponentially distributed, with a
rate that depends on the spine length. We will emphasize
here that the mean sojourn time inside the spine neck merely
depends on its width, while it influences significantly the
sojourn time in the full spine.
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II. RESULTS

Intuitive mathematical formulas based on one-dimen-
sional considerations, using electrical analogy, have been
used by Svoboda et al. [6] to estimate the calcium dynamics
[11] and more recently diffusion of inert molecules in spines
[12]. Early attempts at the derivation of such formulas were
made by Koch and Poggio [13], Wilson [14], and Rall [15].
An explicit formula, derived mathematically from a diffusion
model in three dimensions, was first given in Holcman et al.
[8] and Singer er al. [9,10]. It shows significant qualitative
differences from previous analysis: the mean sojourn time of
a diffusing molecule inside an empty spine of neck length L,
longer than the neck radius & (L>¢) is given by
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where V is the volume of the spine head and D is the diffu-
sion coefficient. Formula (1) means that the mean escape
time of a diffusing particle from a dendritic spine is the sum
of the mean first passage time to the entrance of the neck
(assuming that a diffusing particle entering the spine neck
cannot return into the spine head), plus the mean time to
travel through the spine neck. Formula (1) shows that both
changes in the volume V of the spine head and neck length L
affect the mean diffusion time 7;. For example, in a spine of
length L=1 um, volume V=1 um?, radius £=0.1 um, and
diffusion coefficient D=400 ,umz/ s, we have $=6.25 ms
while %:1.25 ms. Thus a calcium ion spends most of its
sojourn time in the head. Moreover, when the spine neck is
small compared to the radius of the head, it can be shown,
using mathematical considerations [9,10], that any transient
diffusion process in the entire spine can be fitted by a single
exponential of rate Tll Formula (1) describes the time course
of an ion that does not return to the spine head after it enters
the spine neck. This situation may represent, for example, a
crowded neck entrance occupied by the spine apparatus.
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When the neck entrance is not sufficiently crowded to
block a Brownian molecule from returning to the spine head,
the mean sojourn time inside the total spine 7y, can be
expressed as an infinite sum over all the possibilities to re-
enter the spine head. Applying Bayes rule, the total sojourn
is given by

FspinezE('7-|I:O)Pr(F'O)+E('TiFl)Pr(Fl)'|' Tt

where F”, n=0,1,..., denotes the event that a diffusing mol-
ecule starting inside the spine head reenters n times into the
spine head before reaching the dendritic shaft where it exits.
E(7| F™) represents the mean time the molecule spends inside
the spine after exactly n returns into the head. If p,=Pr(F°)
denotes the probability of no return, then Pr(F")=p(l
—po)". We denote by 7, the mean sojourn time inside the
spine head, 7, is the conditional mean time the diffusing
molecule reaches the dendrite for the first time before return-
ing into the head, and 7, is the mean conditional time a
molecule inside the spine neck returns for the first time into
the head before reaching the dendrite. Using the relation

E(7'|Fk) =7+ k(7,+ 1)+ 7,

we obtain the expression for the total time
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This computation relies on the following property: when a
diffusing molecule reenters the spine head, because the neck
radius is small compared to other lengths, after traveling a
certain distance away from a boundary layer located at the
entrance of the spine head, the diffusing molecules loses its
memory of the initial position. To obtain an explicit expres-
sion of 7., We approximate the spine neck geometry as a
one-dimensional interval [H, D], of length L. We define Tf
and Tf as the first time to reach the head and the dendrite,
respectively. The probability that a random molecule, start-
ing at position x, enters the head before reaching the den-
dritic shaft is denoted by p(x)=Pr{T" <T"}. It satisfies the
equation p”(x)=0,p(0)=0, and p(L)=1, Karlin et al. [16],

. (2)
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To approximate the mean sojourn time in a spine head of
volume V, we use the results of the narrow escape problem,
Holcman et al. [8] and Singer et al. [9,10], which lead to

7,=V/(4De¢)

for a general spine head and to
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for a spherical spine head, where we have included in the
latter the additional correction term. To derive an explicit
expression for formula (2), we now use the previous compu-
tations. Due to the presence of a boundary layer of size ¢, at
the junction between the spine head and the neck, a diffusing
molecule will be considered in the neck when it has traveled
a distance of the order e. We approximate the entrance dis-
tribution of points at the neck as a Dirac distribution located
at position x=ae, where a should be of order one. We thus
obtain the following expressions:
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and the solution is p(x)=x/L. Using the probability g(x)=1 and
—p(x)=Pr{T? < T}, the definitions of the conditional mean L>—(as)® L2
times 7,(x)=E(T?| T <T?) and 7,(x)=E(T?|T°<T"), the "= ep 6D
functions v,(x)=7.(x)g(x) and v,(x)=7,(x)p(x) satisfy, re-
spectively, Finally
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Estimation of the free parameter a will be discussed below.
The addition of binding molecules or a hydrodynamic drift,
due to spine twitching, requires another exponential term for
the description of the calcium time course (see Holcman et
al. [17]).

To further analyze the spine neck and the dendrite, we
approximate their geometry as thin cylinders. To estimate the
effect of spine neck radius, we use an explicit solution of the
diffusion equation in a cylindrical geometry. When we use
the previous approximation of a cylinder with reflecting lat-
eral boundary, the time course of diffusing molecules, start-
ing uniformly distributed at one side of the cylinder (see
Crank [18]) is at first order, the sum of the first two expo-
nential terms in the eigenfunction expansion of the concen-
tration. Indeed, the expansion of the probability density func-
tion p is p(r,z,t)=~e™Mu,(z)+eu,(r,z), where the rate
constants are given, respectively, by
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where j;=2.4048 is the first zero of the Bessel function J,,.
This classical result shows that A, >\ and thus the extrusion
rate for an empty spine neck depends mainly on the first
exponential, which depends, in turn, only on the spine
length. Changing the neck radius can affect the diffusion
process only through the second exponential, but leaves the
first, solely L-dependent exponential term unaffected. For a
spine with a neck longer than the neck radius (e.g., by a
factor of 3), the spine length is the fundamental regulatory
geometrical parameter for the diffusion decay rate.

To confirm these results, we studied diffusion after flash
photolysis of a biologically “inert” molecule, fluorescein, at
two different dendritic locations. We use here cells, loaded
with caged fluorescein, which were not fluorescent initially
but became fluorescent under its rapid photolysis. Uncaging
methods allowed us to release it from the cage in a local and
fast manner. On the other hand, any buffering or extrusion
through specific pumps or uptake into stores are not contrib-
uting to the dynamics here. Then, the geometry (length, di-
ameter) of the tested object is the only parameter left which
may affect the diffusion process. The experiments are de-
signed for fluorescein concentration to be the same in thinner
and thicker dendrites due to its loading with a patch pipette.
These experiments are in contrast with the ones initiated in
Ref. [7] which described the effects of calcium dynamics
between the spine head and the parent dendrite. For that
purpose NP-EGTA (a caged compound which releases cal-
cium following its photolysis) was used. At that time, we
estimated the potential role of the spine neck in calcium
extrusion. It was shown there both at an experimental and
mathematical level that plasticity of spine neck length is a
natural way to isolate longer spines from the dendrite and, on
the contrary, to connect shorter ones through calcium remov-
able mechanisms such as calcium exchangers.

Diffusion in a cylindrical dendrite is presented in Fig. 1.
Each curve is an averaging result of 20 sequential uncaging
trials performed at a rate of 0.1 Hz for each segment. White

. AF .
and gray traces are normalized = conversions related to the
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FIG. 1. Comparisons of fluorescence kinetics in thin and thick
dendrites following flash photolysis of caged fluorescein, detected
with a fast line scan. (a) Cultured hippocampal cell, transfected at
1 week in culture with DsRed plasmid to visualize the dendrites and
spines using a lipofectamine 2000™ (Invitrogen) method (for de-
tails see Ref. [7]). Image was taken 3 days after transfection using a
PASCAL confocal microscope (Zeiss). The helium neon 633 nm
laser spot in the middle of box 1 represents the location of the uv
(355 nm) flash. White boxes, containing thinner (1) and thicker (2)
dendritic segments are shown at higher magnification in (b) 1 and 2.
The neuron was patch clamped at the soma with a glass pipette
(arrow at the bottom of a) containing 100 uM of caged fluorescein.
(b) 1 and 2: thin (1, less than 1 wm in diameter) and thick (2, about
2.5 um in diameter) dendritic segments, line scanned at a rate of
0.7 ms per line in the middle and along the segment. Measurements
were performed at the focus of uncaging (flashes, arrow at 0 wm)
and then 0.6, 1.2, 1.8, 2.4, and 3.6 um apart, as shown in (b).
Responses on the left and the right sides of the focus were found
symmetric (data not shown). (c) Graphic representations of line
scan recordings at the distances, shown in (b).

thin and the thick dendritic segments. We recall that the ratio
% is well used and it represents the “fluorescent” signal well
adapted to overcome several limitations of fluorescent mi-

croscopy. When an increase in fluorescence is detected, the
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FIG. 2. (Color online) Molecular simulations in a three-dimensional (3D) model of a dendritic spine. The spine geometry is approximated
by a spherical head of radius R=0.5 wm and a cylindrical neck with radius & and length L. All particles were initially released from the
center of the spine head. (a), (b) Mean sojourn time (= standard) of a diffusing molecule in the spine neck and in the spine as a function of
the spine neck length (a) and the spine neck radius (b) assuming that no reentries into the spine neck occur after the molecule entered the
neck. The theoretical results as predicted by formula (1) are shown as solid lines. (c) and (d) Same settings as in (a) and (b), except that
multiple reentries into the spine head were allowed. The theoretical prediction according to formula (2) are shown as solid lines for a
=0.84 (e) Snapshots of one realization of the Brownian trajectory as traced by one diffusing molecule in a 3D model of a dendritic spine with
possible reentries into the spine head (R=0.5 um, L=1.0 wm, and £=0.1 um). The snapshots are taken at different times =0, 1, 5, 10, and
57.4 ms, where the particle reached the dendritic shaft. Simulation parameters in (a)—(e). Diffusion constant D=400 um?/s (free calcium),

time step=1e-7 s, total simulation time: 250 ms.

ratio ATF allows us to differentiate the signal levels coming
from different focal planes. Indeed, signals coming from dif-
ferent focal planes are distorted and this distortion effect can
lead to wrong conclusions. The use of confocal microscopy,
which takes recordings from relatively thin optical sections
(about 1—1.5 um) partially solves the distortion problem;
but when extremely thin biological objects such as dendrites
(1 to 2 wm in diameter) or dendritic spines (less than 1 wm)
are studied, the confocal imaging seems to be insufficient to
compensate for the distortion in thickness, but using AFF re-
solves this issue. Using this analysis, we found that the dif-
fusion rates and the spread distances as well as decay times

are very similar for both a thin and thick dendrite, with a
decay time course being slightly slower in the thicker den-
drite. However, this difference was found to be not statisti-
cally significant (n=3 cells, eight dendritic segment pairs,
p>>0.1). In both dendritic segments, the fluorescence spread
was highly restricted. As predicted by the theory above, the
diffusion spread is quite insensitive to the neck radius. Simi-
lar experiments were performed on dendritic spines where
uncaging occurred on the spine head or on the adjacent den-
drite (data not shown). We found that the length of the spine
neck, but not its neck diameter, affects diffusion between the
two compartments. However, due to the limitation of the
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optical imaging resolution, the estimation of the spine neck
radius is in general problematic, thus we decided not to
present these results.

To confirm our results, we use formula (1) to estimate the
mean time a diffusing molecule stays both inside the total
spine and the spine neck when no reentries into the spine
head is possible. For that purpose, we ran 5-10 repetitions
(we ran 5 and 10 for large and small radii, respectively) of
Langevin simulations (Monte Carlo simulations) of 100 dif-
fusing molecules in a generic dendritic spine for different
settings of the spine neck radius and length. Because mol-
ecules do not interact, this corresponds to a total of 500-
1000 realizations. In each numerical experiment, we plotted
the statistics (mean and variance) of the Brownian particles,
initially released at the center of the spine head.

The results of the simulations and the theoretical predic-
tions (solid lines) for the mean sojourn time in the neck and
spine for different spine neck length L and spine neck radius
are shown in Figs. 2(a) and 2(b). According to Fig. 2(b), the
mean time to travel across the spine neck does not change
significantly with the spine neck radius as predicted by the
theory. Thus the neck radius has little influence on the time
that a diffusing molecule spends in the spine neck. On the
contrary, the mean time in the spine neck depends quadrati-
cally on its length, as revealed by the one-dimensional-
theoretical formula (1) and as validated by the fit presented
in Fig. 2(a).

We next tested in numerical simulations the validity of
expression (2). As before, we analyzed the mean sojourn
time of a diffusing molecule inside the spine for different
values of the spine neck length and the spine neck radius, but
now multiple reentries into the spine head were possible
[Figs. 2(c) and 2(d)]. The numerical data were analyzed as
before. We estimated the parameter a by optimally fitting
(least-squares sense) the mean sojourn times in formula (2)
resulting in a value of a=0.84.

The excellent agreement with the theoretical predictions
shows that the formula for 7. captures the main geometri-
cal features of the dendritic spine. We conclude that for a
diffusing molecule which can return into the spine head after
it entered the neck, the mean sojourn time in the spine is
drastically changed compared to the situation where no such
reentries are possible. Finally, the formula for 7. shows
that the neck length and the spine radius determine the over-
all time course of a diffusing molecule inside the dendritic
spine.

III. CONCLUSION

We conclude that in the first approximation, changes in
the spine neck radius will not affect the diffusion decay of
diffusing molecules, contrary to the interpretation proposed
in Bloodgood et al. [12], which is based on a guessed math-
ematical formula. This discrepancy suggests that changes in
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diffusion, induced by physiological conditions, may be due
to internal space reorganization, such as to moving or-
ganelles. Second, it is surprising to see that the passive decay
rate, which is the reciprocal of the mean time a diffusing
molecule spends inside a dendritic spine, can be significantly
increased (to a factor of 15), when the diffusing molecules
may go back inside the spine head (Fig. 2). A diffusing ion
may stay up to 150 ms inside a spine if it can go back into
the head, while it is less than 10 ms otherwise. These results
are compatible with the experimental observations reported
in Ref. [6]. It is conceivable that the spine apparatus or any
other organelles located at the entrance of the spine neck
may regulate this possibility.

In addition to passive geometrical constraints imposed by
the spine shape, calcium dynamics, for example, depends on
active processes such as calcium pumps, buffers, or stores;
but, remarkably, the regulation of spine length may be suffi-
cient to explain the diffusing dynamical coupling between
the spine and the dendrite described in Refs. [7] and [12].
Specifically, because the sojourn time of an ion in the neck
increases quadratically with the neck length, while keeping
the number of calcium exchangers or pumps constant, we
propose that for small L, a spine can be completely coupled
to the dendrite via diffusion, while for L larger than a critical
value, most of the calcium ions are pumped outside or inside
the endoplasmic reticulum and thus do not reach the den-
drite, as noted in Korkotian et al. [7] and Holcman et al.
[19]. The ratio of pumped ions to those that have reached the
dendrite depends on the density and the distribution of ex-
changers, the diffusion constant, and the extrusion rate. This
dynamical role of spines has to be compared to the static role
of dendrites, which can also compartmentalize calcium. In-
deed, imaging experiments have shown that calcium dynam-
ics in aspiny dendrites can be compartmentalized with the
same time scale and over the same space (Goldberg er al.
[20]) as in spines.

Trafficking of ions or larger molecules in spines is critical
for induction and maintenance of plasticity processes. The
present analysis quantifies the role of the spine geometry for
its function, as a calcium conductor and as a regulatory ma-
chine for any diffusing molecules. Specifically, the ability of
dendritic spines to regulate their own geometrical shape
makes them unique structures different from static dendrites.
It is this ability which allows spines to control very effi-
ciently calcium signaling between the spine head and its par-
ent dendrite.
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